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Globally exponential stability of Complex (with coupling) Nonlinear Singular Impulsive Networked Control Systems (CNSINCS)
with packet dropouts and time-delay is investigated. Firstly, the mathematic model of CNSINCS is established.Then, by employing
the method of Lyapunov functional, exponential stability criteria are obtained and the impulsive controller design method is given.
Finally, some simulation results are provided to demonstrate the effectiveness of the proposed method.

1. Introduction

At present, singular system is widely used in the control
of spacecraft, flexible robot, complex power, large chemical
and wireless transmission system [1–5]. Many results had
been achieved for discrete singular system and time-delay
singular system. Such as in [6], the nonlinear discrete sin-
gular perturbation model was established and the system
condition was given. In [7], chattering free sliding mode
control for uncertain discrete time-delay singular system was
investigated. The asymptotically stable was established, and
the chattering problem that appears in traditional variable
structure system was eliminated. As for time-delay singular
system, the stability of uncertain time-delay singular systems
was researched and the asymptotic stability condition was
achieved in [8] by using Jensen integral inequality and
feedback control method.

On the other hand, singular system has impulsive behav-
ior in many cases [9–14]. So it is very important to discuss
the problem of impulsive control. For the stability of the
impulsive control system, nonlinear impulsive control was
put forward and the concept of asymptotic stability condition
was provided in [11]. Asymptotic stability condition for a
class of uncertain impulsive system was established through
the comparison theorem in [12]. Switch control method was
used to research the stability of singular impulsive system,

robust stabilization, and 𝐻
∞

control problem in [13]. Linear
approximation and the LMI method were used, respectively,
to study the problem of system stability and the sufficient
conditions for asymptotic stability in [14].

In network impulsive control system packet dropouts and
time-delay exist which will influence the stability of singular
system. It is necessary to analyze stability condition and the
method of controller design. That is the problem focussed
in this study. According to the Lyapunov function theory
and comparison theorem, the sufficient conditions for the
global exponential stability of the system is obtained. The
detailed design process of impulsive controller is given in
the paper. System will be stable in accordance with the decay
rate to achieve exponential stability. A numerical example is
provided to illustrate the correctness of theoretical and the
effectiveness of design method.

2. The Mathematic Model of CNSINCS

Themathematic model of CNSINCS can be described as

𝐸�̇�
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) +

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) ,

𝑖 = 1, . . . , 𝑁, 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
]
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𝑥
𝑖
(𝑡
+

𝑘
) = 𝑐
𝑖
𝑥
𝑖
(𝑡
𝑘
) + 𝑢
𝑖
(𝑡
𝑘
) , 𝑡 = 𝑡

+

𝑘
, 𝑘 = 1, 2, . . .

𝑥
𝑖
(𝑡) = 𝜑

𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑥
𝑖
(𝑡) ∈ 𝑅

𝑛 is the state vector of the 𝑖th node. 𝐴 is
a constant matrix of 𝑛 × 𝑛. 𝑐

𝑖
is known scalar. 𝐸 ∈ 𝑅

𝑛×𝑛

is a singular constant matrix, and 0 < rank𝐸 = 𝑟 ≤ 𝑛,
without loss of generality; we hypotheses 𝐸 = [

𝐼
𝑟
0

0 0
]. 𝑓(⋅)

is a nonlinear function. Γ is the internal coupling matrix.
𝐺 = 𝐺

𝑖𝑗
∈ 𝑅
𝑛×𝑛 is the coupling matrix of the whole network

structure and weights. 𝜏(𝑡) is network transmission delay and
is assumed to satisfy 0 ≤ 𝜏(𝑡) ≤ 𝜏.

In the process of data transmitting, the buffer’s model can
be described as:

𝑢
𝑖
(𝑡
𝑘
)={

𝑢
𝑖
(𝑡
𝑘
), 𝑘=1, 2,. . . , if transmitted successfully,

𝑢
𝑖
(𝑡
𝑘−1
), 𝑘=1, 2,. . . , otherwise,

𝑥
𝑖
(𝑡
𝑘
)={

𝑥
𝑖
(𝑡
𝑘
), 𝑘=1, 2,. . . , if transmitted successfully,

𝑥
𝑖
(𝑡
𝑘−1
), 𝑘=1, 2,. . . , otherwise.

(2)

The impulsive controller can be designed as

𝑢
𝑖
(𝑡
𝑘
) = 𝐾
𝑖
𝑥
𝑖
(𝑡
𝑘
) , (3)

where 𝑢
𝑖
(𝑡
𝑘
) ∈ 𝑅

𝑚. Substituting (2) and (3) into (1), the
closed-loop nonlinear singular impulsive networked system
model is obtained as follows:

𝐸�̇�
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) +

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) ,

𝑖 = 1, . . . , 𝑁, 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] ,

𝑥
𝑖
(𝑡
+

𝑘
) = 𝑐
𝑖
𝑥
𝑖
(𝑡
𝑘
) + (1 − 𝜎

𝑖
(𝑡
𝑘
))𝐾
𝑖
𝑥
𝑖
(𝑡
𝑘
)

+ 𝜎
𝑖
(𝑡
𝑘
)𝐾
𝑖
𝑥
𝑖
(𝑡
𝑘−1
) , 𝑡 = 𝑡

+

𝑘
, 𝑘 = 1, 2, . . . ,

𝑥
𝑖
(𝑡) = 𝜑

𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(4)

where 𝜎
𝑖
(𝑡
𝑘
) = 1 denotes that there are data dropouts and,

𝜎
𝑖
(𝑡
𝑘
) = 0, there are no packet dropouts.

Lemma 1. Let 𝑃 ∈ 𝑅
𝑛×𝑛 be a symmetric positive definite

matrix and 𝑃 = 𝑄
𝑇

𝑄. For any 𝑥, 𝑦 ∈ 𝑅
𝑛×𝑛 and 𝐴 ∈ 𝑅

𝑛×𝑛,
then

(1) 𝑥𝑇(𝐴𝑇𝑃𝐸 + 𝐸𝑇𝑃𝑇𝐴)𝑥 ≤ 2𝜆max(𝐴)𝑥
𝑇

𝐸
𝑇

𝑃𝐸𝑥,
(2) 𝑥𝑇(𝐴𝑇𝑃 + 𝑃𝐴)𝑥 ≤ 2𝜇(𝑄𝐴𝑄−1)𝑥𝑇𝑃𝑥,

(3) |𝑥𝑇𝑃𝑦| ≤ √𝑥𝑇𝑃𝑥√𝑦𝑇𝑃𝑦.

Lemma 2. According to the definition of Kronecker product,
for a given matrix 𝐴, 𝐵, and scalar 𝛼, the following equality
can be achieved:

(1) (𝛼𝐴) ⊗ 𝐵 = 𝐴 ⊗ (𝛼𝐵),
(2) (𝐴 + 𝐵) ⊗ 𝐶 = (𝐴 ⊗ 𝐶) + (𝐵 ⊗ 𝐶),
(3) (𝐴 ⊗ 𝐵) ⊗ (𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷).

If 𝑋(𝑡) = (𝑥
𝑇

1
(𝑡), . . . , 𝑥

𝑇

𝑁
(𝑡))
𝑇, 𝐶 = diag{𝑐

1
, . . . , 𝑐

𝑁
}, and

𝐹(𝑋(𝑡)) = (𝑓
𝑇

(𝑥
𝑇

1
(𝑡), . . . , 𝑓

𝑇

(𝑥
𝑇

𝑁
(𝑡))
𝑇, according to Lemma 1,

the complex nonlinear singular system can be expressed as

(𝐼
𝑁
⊗ 𝐸) �̇� (𝑡) = (𝐼

𝑁
⊗ 𝐴)𝑋 (𝑡) + 𝐹 (𝑋 (𝑡))

+ (𝐺 ⊗ Γ)𝑋 (𝑡 − 𝜏 (𝑡)) , 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] ,

𝑋 (𝑡
+

𝑘
) = 𝐶𝑋 (𝑡

𝑘
) + (1 − 𝜎 (𝑡

𝑘
))𝐾𝑋 (𝑡

𝑘
)

+ 𝜎 (𝑡
𝑘
)𝑋 (𝑡
𝑘−1
) , 𝑡 = 𝑡

+

𝑘
.

(5)

Suppose

𝐸 = [
𝐸 0

0 0
] , 𝐼

𝑁
= [

𝐼
𝑁

0

0 0
] , 𝑍 (𝑡

𝑘
) = [

𝑋 (𝑡
𝑘
)

𝑋 (𝑡
𝑘−1
)
] ,

𝐴 = [
𝐴 0

0 0
] .

(6)

Then (5) is equivalent to the following system:

(𝐼
𝑁
⊗ 𝐸) �̇� (𝑡) = (𝐼

𝑁
⊗ 𝐴) 𝑧 (𝑡) + [

𝐹 (𝑥 (𝑡))

0
]

+ [
𝐺 ⊗ Γ 0

0 0
] 𝑧 (𝑡 − 𝜏 (𝑡)) ,

(𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

+

𝑘
)

= 𝐶 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
)

+ [
(1 − 𝜎 (𝑡

𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
] (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
) .

(7)

Lemma 3 (see [15]). If 𝐿(𝑡, 𝑧(𝑡)) and 𝑈
𝑘
(𝑧(𝑡)) satisfy the

Lipchitz condition, there exists a uniqueness of solution to
nonlinear singular impulsive differential equation which is
written as

�̇� (𝑡) = 𝐿 (𝑥, 𝑡) , 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] ,

Δ𝑧 (𝑡) = 𝑈
𝑘
(𝑧 (𝑡)) , 𝑡 = 𝑡

+

𝑘
, 𝑘 = 1, 2, . . . ,

(8)

where 𝑧(𝑡) ∈ 𝑅𝑛, 𝐿 : 𝑅
+
× 𝑅
𝑛

→ 𝑅
𝑛

, 𝑈
𝑘
: 𝑅
𝑛

→ 𝑅
𝑛.

3. The Design of CNSINCS

For the nonlinear singular networked impulsive control
system (4), we have the following theorem.
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Theorem 4. If there exist 0 < 𝜌 = sup
𝑘∈𝑁

{𝑡
𝑘
− 𝑡
𝑘−1
} < ∞ and

a nonsingular matrix 𝐾 ∈ 𝑅
𝑛×𝑛, such that

2 ln𝛽
𝜌

+(2𝜆max (𝐴) + 2𝐿
𝜆max ((𝐼𝑁 ⊗ 𝐸)

𝑇

𝑃)

𝜆min ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)

+ 1)

+𝜆
2

max (𝐺 ⊗ Γ) < 1

(9)

0 < 𝛽 < 1, (10)

where

𝛽 = [𝜆
2

max (𝐶 + [
(1 − 𝜎 (𝑡

𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
])]

1/2

(11)

then the nonlinear singular networked impulsive control system
(4) is asymptotically stable:

‖𝑥 (𝑡)‖ ≤
1

𝛽
√
𝜆max (𝑃)

𝜆min (𝑃)
sup
−𝜏≤𝜃≤0

{
𝜙 (𝜃)

} 𝑒
−(𝜆/2)𝑡

, (12)

where 𝜆 is the positive solution of 𝜆 + 𝑝 + 𝑞𝑒𝜆𝜏 = 0, and 𝑞 >
0, 𝑝 + 𝑞 < 0:

𝑝 =
2 ln𝛽
𝜌

+(2𝜆max (𝐴) + 2𝐿
𝜆max ((𝐼𝑁 ⊗ 𝐸)

𝑇

𝑃)

𝜆min ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)

+ 1)

+ 𝜆
2

max (𝐺 ⊗ Γ) .

(13)

Proof. From [16], we know that 𝜆 + 𝑝 + 𝑞𝑒𝜆𝜏 = 0 must have
a solution. Set 𝑉(𝑡) = 𝑧

𝑇

(𝑡)(𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃(𝐼
𝑁
⊗ 𝐸)𝑧(𝑡), where

(𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃(𝐼
𝑁
⊗ 𝐸) ≥ 0.

When 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
], the derivative of 𝑉(𝑡) along the

trajectories of the CNSINCS (4) is

�̇� (𝑡) = ((𝐼
𝑁
⊗ 𝐸) �̇� (𝑡))

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡)

+ ((𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡))

𝑇

𝑃
𝑇

(𝐼
𝑁
⊗ 𝐸) �̇� (𝑡)

= ((𝐼
𝑁
⊗ 𝐴) 𝑧 (𝑡) + [

𝐹 (𝑥 (𝑡))

0
] + [

𝐺 ⊗ Γ 0

0 0
]

×𝑧 (𝑡 − 𝜏 (𝑡)))

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡)

+ ((𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡))

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐴) 𝑧 (𝑡) [

𝐹 (𝑥 (𝑡))

0
]

+ [
𝐺 ⊗ Γ 0

0 0
] 𝑧 (𝑡 − 𝜏 (𝑡))

= 𝑧
𝑇

(𝑡) (𝐴
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) + (𝐼

𝑁
⊗ 𝐸)
𝑇

𝑃
𝑇

𝐴)

× 𝑧 (𝑡) + 𝐹
𝑇

(𝑥 (𝑡)) 𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡)

+ 𝑧
𝑇

(𝑡) (𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃𝐹 (𝑥 (𝑡))

+ 𝑧
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐺
𝑇

𝑃𝐸𝑧 (𝑡)

+ 𝑧
𝑇

(𝑡) (𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃
𝑇

𝐺𝑧 (𝑡 − 𝜏 (𝑡)) .

(14)

According to Lemma 3 we have

�̇� (𝑡)

≤ 2𝜆max (𝐴) 𝑧
𝑇

(𝑡) (𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡)

+ 2𝐿𝜆(𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃 ‖𝑧 (𝑡)‖

+ 2√𝑧𝑇 (𝑡) 𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡)

× √𝑧𝑇 (𝑡 − 𝜏 (𝑡)) (𝐺 ⊗ Γ)
𝑇

(𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃 (𝐺 ⊗ Γ) 𝑧 (𝑡 − 𝜏 (𝑡))

≤ 𝜆
2

max (𝐺 ⊗ Γ) 𝑧
𝑇

(𝑡 − 𝜏 (𝑡)) (𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡 − 𝜏 (𝑡))

+ 2𝐿

𝜆max ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)

𝜆min ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)

𝑧
𝑇

(𝑡) (𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡)

+ 2𝜆max (𝐴) 𝑧
𝑇

(𝑡) (𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡)

+ 𝑧
𝑇

(𝑡) (𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡) .

(15)

On the other hand, when 𝑡 = 𝑡+
𝑘
,

�̇� (𝑡
+

𝑘
) = 𝑧
𝑇

(𝑡
+

𝑘
) (𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

+

𝑘
)

= 𝑧
𝑇

(𝑡
+

𝑘
) (𝐼
𝑁
⊗ 𝐸)
𝑇

(𝐼
𝑁
⊗ 𝐸)
𝑇

× 𝑃 (𝐼
𝑁
⊗ 𝐸) (𝐼

𝑁
⊗ 𝐸) 𝑧 (𝑡

+

𝑘
)

= [(𝐼
𝑁
⊗ 𝐸) 𝑧

𝑇

(𝑡
+

𝑘
)]
𝑇

(𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸)

× [(𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

+

𝑘
)]

= (𝐶 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
)

+ [
(1 − 𝜎 (𝑡

𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
] (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
))

𝑇

,

(𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸)

× (𝐶 + [
(1 − 𝜎 (𝑡

𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
]) (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
)
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= 𝑧
𝑇

(𝑡
𝑘
) (𝐼
𝑁
⊗ 𝐸)
𝑇

× (𝐶 + [
(1 − 𝜎 (𝑡

𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
])

𝑇

× (𝐼
𝑁
⊗ 𝐸)
𝑇

,

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
)

≤ 𝜆
2

max (𝐶 + [
(1 − 𝜎 (𝑡

𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
])

× 𝑧
𝑇

(𝑡
𝑘
) (𝐼
𝑁
⊗ 𝐸)
𝑇

(𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃,

(𝐼
𝑁
⊗ 𝐸) (𝐼

𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
)

= 𝜆
2

max (𝐶 + [
(1 − 𝜎 (𝑡

𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
])

× 𝑧
𝑇

(𝑡
𝑘
) (𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
)

= 𝛽
2

𝑉 (𝑡
𝑘
) ,

(16)

where 𝛽2 = 𝜆2max(𝐶+ [
(1−𝜎(𝑡

𝑘
))𝐾 𝜎(𝑡

𝑘
)𝐾

0 0
]), supposing that 𝜀 > 0

is random constant, a comparison system can be established
as follows:

V̇ (𝑡) = (2𝜆max (𝐴) + 2𝐿
𝜆max ((𝐼𝑁 ⊗ 𝐸)

𝑇

𝑃)

𝜆min ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)

+ 1) V (𝑡)

+ 𝜆
2

max (𝐺 ⊗ Γ) V (𝑡 − 𝜏 (𝑡)) + 𝜀 𝑡 ̸= 𝑡
𝑘
,

V (𝑡+
𝑘
) = 𝛽V (𝑡

𝑘
) , 𝑡 = 𝑡

𝑘
,

V (𝜃) = 𝜆max (𝑃)
𝜙 (𝜃)



2

, −𝜏 ≤ 𝜃 ≤ 0.

(17)

It is clear that𝑉(𝑡) ≤ V(𝑡)when −𝜏 ≤ 𝜃 ≤ 0, according to [16],
and we have𝑉(𝑡) ≤ V(𝑡)when 𝑡 ≥ 0; the trivial solution of the
comparison system is

V (𝑡) = 𝑊 (𝑡, 0) V (0)

+ ∫

𝑡

0

𝑊(𝑡, 𝑠) 𝜆
2

max (𝐺 ⊗ Γ) V (𝑠 − 𝜏 (𝑠) + 𝜀) 𝑑𝑠, 𝑡 ≥ 0,

(18)

where𝑊(𝑡, 𝑠) is Cauchy matrix which satisfies

𝑊(𝑡, 𝑠) = 𝛽
2𝜂(𝑡,𝑠)

× 𝑒
{(2𝜆max(𝐴)+2𝐿(𝜆max((𝐼𝑁⊗𝐸)

𝑇

𝑃)/𝜆min((𝐼𝑁⊗𝐸)
𝑇

𝑃))+1)(𝑡−𝑠)}

≤ 𝛽
2(𝑡−𝑠/𝜌)−1

𝑒
(𝑝−(2 ln𝛽/𝜌))(𝑡−𝑠)

≤ 𝛽
−2

𝑒
𝑝(𝑡−𝑠)

(19)

in which 𝜂(𝑡, 𝑠) is the number of control impulses in the
interval (𝑠, 𝑡], 0 < 𝜌 = sup

𝑘∈𝑁
{𝑡
𝑘
− 𝑡
𝑘−1
} < ∞, for 𝑡 ≥ 0;

we have

V (𝑡) ≤ 𝛽−2𝜆max ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸))

𝜑 (0)


2

+ ∫

𝑡

0

𝛽
−2

𝑒
𝑝(𝑡−𝑠)

𝜆
2

max (𝐺 ⊗ Γ) V (𝑠 − 𝜏 (𝑠) + 𝜀) 𝑑𝑠

≤ 𝛾𝑒
𝑝𝑡

+ 𝑒
𝑝(𝑡−𝑠)(𝑞V (𝑠 − 𝜏 (𝑠) + 𝜀) 𝑑𝑠,

(20)

where

𝛾 = 𝛽
−2

𝜆max ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸)) sup

−𝜏≤𝑠≤0

𝜑 (𝑠)


2

= 𝛽
−2

𝜆max (𝑃) sup−𝜏≤𝑠≤0
𝜑 (𝑠)



2

.

(21)

In the following, we will prove that the following inequal-
ity holds:

V (𝑡) ≤ 𝛾𝑒−𝜆𝑡 −
𝜀

𝛽2𝑝
, 𝑡 ≥ 0 (22)

Since 𝜀 > 0, 𝑝 < 0, so 𝜀/𝛽2𝑝 < 0. If there exists 𝑡∗ > 0 which
satisfies

V (𝑡∗) ≥ 𝛾𝑒−𝜆𝑡
∗

−
𝜀

𝛽2𝑝
, (23)

V (𝑡) > 𝛾𝑒−𝜆𝑡 −
𝜀

𝛽2𝑝
, 𝑡 < 𝑡

∗

. (24)

From (16) and (24) we have

V (𝑡∗)

≤ 𝛾𝑒
−𝜆𝑡
∗

+ ∫

𝑡
∗

0

𝑒
𝑝(𝑡
∗

−𝑠)

[𝑞V (𝑠 − 𝜏 (𝑠)) + 𝜀] 𝑑𝑠

< 𝑒
𝑝𝑡
∗

{𝛾 −
𝜀

𝛽2 (𝑝 + 𝑞)

+∫

𝑡
∗

0

𝑒
−𝑝𝑠

[𝛾𝑞𝑒
−𝜆(𝑠−𝜏(𝑠))

−
𝜀𝑞

𝛽2 (𝑝 + 𝑞)
+
𝜀

𝛽2
]𝑑𝑠}

< 𝑒
𝑝𝑡
∗

{𝛾 −
𝜀

𝛽2 (𝑝 + 𝑞)
+ 𝛾𝑞𝑒
𝜆𝜏

×∫

𝑡
∗

0

𝑒
−(𝑝+𝜆)𝑠

𝑑𝑠 +
𝜀𝑝

𝛽2 (𝑝 + 𝑞)
∫

𝑡
∗

0

𝑒
−𝑝𝑠

𝑑𝑠}

< 𝑒
𝑝𝑡
∗

{𝛾 −
𝜀

𝛽2 (𝑝 + 𝑞)

+𝛾 [𝑒
−(𝑝+𝜆)𝑡

∗

− 1] −
𝜀

𝛽2 (𝑝 + 𝑞)
(𝑒
−𝑝𝑡
∗

− 1)}

= 𝛾𝑒
−𝜆𝑡
∗

−
𝜀

𝛽2 (𝑝 + 𝑞)

(25)
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which contradicts with (23), and consequently (22) holds. Let
𝜀 → 0; then

𝑉 (𝑡) ≤ V (𝑡) ≤ 𝛾𝑒−𝜆𝑡, 𝑡 ≥ 0. (26)

Moreover

𝑉 (𝑡) ≥ 𝜆min (𝑃) ‖𝑥 (𝑡)‖
2

, 𝑡 ≥ 0. (27)

Combining the inequality (26) and (27),

‖𝑥 (𝑡)‖ ≤ (
1

𝛽
)√

𝜆max (𝑃)

𝜆min (𝑃)
sup
−𝜏≤𝜃≤0

{
𝜙 (𝜃)

} 𝑒
−(𝜆/2)𝑡 (28)

which implies conclusion (22) and this completes the proof.

Remark 5. For the case 𝛽 ≥ 1, we can replace the condition
0 < 𝜌 = sup

𝑘∈𝑁
{𝑡
𝑘
−𝑡
𝑘−1
} < ∞with 0 < 𝜍 = inf

𝑘∈𝑁
{𝑡
𝑘
−𝑡
𝑘−1
} <

∞; then the conclusion of Theorem 4 still holds except that
now inequality (9) becomes

2 ln𝛽
𝜍

+(2𝜆max (𝐴) + 2𝐿
𝜆max ((𝐼𝑁 ⊗ 𝐸)

𝑇

𝑃)

𝜆min ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)

+ 1)

+ 𝜆
2

max (𝐺 ⊗ Γ) < 1.

(29)

For 𝛽 ≥ 1, we have


𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)

≤

1

√𝛽
sup
−𝜏≤𝑡≤0

{
𝜙 (𝑡)

} 𝑒
−(𝜆/2)𝑡 (30)

in which 𝜆 = max
𝑘∈𝑁

{ln𝛽/(𝑡
𝑘
− 𝑡
𝑘−1
)}.

The proof of the above conclusion remains largely the
same as Theorem 4, so we omitted it to avoid repetition.

4. Design Procedure of Impulsive Control for
Complex Network

According to Theorem 4, the design process of impulsive
control is given as follows.

(1) Calculate the parameters 𝐿,𝑚.

(2) Choose amatrix𝑃which satisfies (𝐼
𝑁
⊗𝐸)
𝑇

𝑃(𝐼
𝑁
⊗𝐸) ≥

0.
(3) For a given parameter 𝜆

0
, we can determine the

control sequence {𝑡
𝑘
}, 𝑡 ∈ 𝑁 as follows. If 0 <

𝛽 < 1, let Θ := (2𝜆max(𝐴) + 2𝐿(𝜆max((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)/

𝜆min((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)) + 1) + 𝜆
2

max(𝐺 ⊗ Γ); then the upper
bounds of time can be taken as 0 < 𝜌 = sup

𝑘∈𝑁
{𝑡
𝑘
−

𝑡
𝑘−1
} = −(ln𝛽)/Θ; if 𝛽 ≥ 1, let Θ := (2𝜆max(𝐴) +

2𝐿(𝜆max((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)/𝜆min((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)) + 1) +

𝜆
2

max(𝐺⊗Γ); then the lower bounds of control intervals
is 0 < 𝜍 = inf

𝑘∈𝑁
{𝑡
𝑘
− 𝑡
𝑘−1
} = (ln𝛽)/Θ.

5. Numerical Simulation

In this section, a numerical example is presented to illustrate
the effectiveness of derived results.

Example 6. Consider the following complicated nonlinear
singular system:

𝐸�̇�
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) +

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) ,

𝑖 = 1, . . . , 𝑁, 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] ,

𝑥
𝑖
(𝑡
+

𝑘
) = 𝑐
𝑖
𝑥
𝑖
(𝑡
𝑘
) + (1 − 𝜎

𝑖
(𝑡
𝑘
))𝐾
𝑖
𝑥
𝑖
(𝑡
𝑘
)

+ 𝜎
𝑖
(𝑡
𝑘
)𝐾
𝑖
𝑥
𝑖
(𝑡
𝑘−1
) , 𝑡 = 𝑡

+

𝑘
, 𝑘 = 1, 2, . . . ,

𝑥
𝑖
(𝑡) = 𝜑

𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] .

(31)

The parameters are given as follows:

𝐸 =

[
[
[

[

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

]
]
]

]

, 𝑐
1
= 𝑐
2
= 1.2,

𝐴 =

[
[
[
[
[
[
[

[

−10 10 0 0

8

3
−1 0 0

0 0
−8

3
0

0 0 2 1

]
]
]
]
]
]
]

]

, 𝑁 = 2,

𝑓 (𝑡, 𝑥
𝑖
(𝑡)) = (0(−𝑥

𝑖1
(𝑡) 𝑥
𝑖3
(𝑡))
𝑇

(𝑥
𝑖1
(𝑡) 𝑥
𝑖2
(𝑡))
𝑇

2𝑥
𝑖3
(𝑡))
𝑇

.

(32)

For simplicity, consider the systemwith 2 nodes. Assume that
the external coupling matrix is 𝐺 = [

−7 3

3 −4
] and the internal

coupling matrix is

Γ =

[
[
[

[

0.1 −0.2 −0.1 0

0 0.1 0.2 0

−0.2 0 0.1 0

0.1 0.2 0.1 −0.1

]
]
]

]

. (33)

Supposing that 𝜏(𝑡) = 0.02sint. According to Lemma 1, we
can choose 𝑃 = 𝐼

8 × 8
, 𝑇 = 𝑡

𝑘+1
− 𝑡
𝑘
= 0.005. The region

of parameters of chaotic system is 𝐿 = 80, and the gain of
impulsive controller is −1.8653 ≤ 𝐾 ≤ −0.5347. The state
trajectory diagram of system is depicted in Figure 1. For the
case of packet dropouts probability is Pr(𝜎(𝑘) = 0 | 0.8)

and initial condition is 𝑥
1
(𝑡) = [3 2 − 1 2]

𝑇, 𝑥
2
(𝑡) =

[6 5 −4 8]
𝑇, and 𝑡 ∈ (−𝜏, 0).

Figure 1 shows that the asymptotic stability of the closed-
loopuncertain systemcan be guaranteed using the networked
impulsive controller designed in this paper.
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Figure 1: The state response of CNSINCS via impulsive control
(color online).

6. Conclusion

In this paper, the global exponential stability CNSINCS
via impulsive control is investigated. According to the Lya-
punov stability theory, the mathematic model of CNSINCS
is established. A general model of network consisting of
time-delay and packet dropouts has been formulated and
the globally exponential stable sufficient conditions have
been established. Impulsive controller, which may ensure
the system achieves exponential stability with a given decay
rate is designed. Therefore our control scheme is efficient
and practical in dealing with problems of data transmission
with time-delay and packet dropouts. As an application, a
numerical simulation is given to demonstrate the usefulness
and practicability of proposed theoretical results.
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